Discrete Evolutionary Genetics: Multiplicative Fitnesses and the Mutation-Fitness Balance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary genetics: The economics of mutation

The presence of mutator genotypes in populations of bacteria may be favoured by selection because they produce rare beneficial mutations and thereby increase the rate of adaptive evolution. Recent work, however, shows that the relationship between mutation rates and adaptive evolution is more complicated.

متن کامل

Evolutionary genetics: What is driving male mutation?

In mammals, most new mutations occur in males. But a study of the evolution of a human X to Y chromosomal translocation has revealed a sex bias much lower than previous estimates. Patterns of substitution suggest that differential methylation between male and female germ lines is a key determinant of the mutation rate.

متن کامل

On Fitness Distributions and Expected Fitness Gain of Mutation Rates in Parallel Evolutionary Algorithms

Setting the mutation rate for an evolutionary algorithm (EA) is confounded by many issues. Here we investigate mutation rates mainly in the context of large-population-parallelism. We justify the notion that high rates achieve better results, using underlying theory which notices that parallelization favourably alters the fitness distribution of a mutation operator. We derive an expression whic...

متن کامل

Mutation in evolutionary games can increase average fitness at equilibrium.

We study game dynamical interactions between two strategies, A and B, and analyse whether the average fitness of the population at equilibrium can be increased by adding mutation from A to B. Classifying all two by two games with payoff matrix [(a,b),(c,d)], we show that mutation from A to B enhances the average fitness of the whole population (i) if both a and d are less than (b + c)/2 and (ii...

متن کامل

How mutation alters fitness of cooperation in networked evolutionary games

Cooperation is ubiquitous in every level of living organisms. It is known that spatial (network) structure is a viable mechanism for cooperation to evolve. Until recently, it has been difficult to predict whether cooperation can evolve at a network (population) level. To address this problem, Pinheiro et al. proposed a numerical metric, called Average Gradient of Selection (AGoS) in 2012. AGoS ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics

سال: 2011

ISSN: 2152-7385,2152-7393

DOI: 10.4236/am.2011.21002